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Abstract

This paper is a discussion of machine learning theory
on empirically learning classification rules. The pa-
per proposes six myths in the machine learning com-
munity that address issues of bias, learning as search,
computational learning theory, Occam's razor, "uni-

versal" learning algorithms, and interactive learning.
Some of the problems raised are also addressed from a
Bayesian perspective. The paper concludes by suggest-
ing questions that machine learning researchers should
be addressing both theoretically and experimentally.

Introduction

Machine learning addresses the computational problem
of learning, whether it be for insight into the corre-
sponding psychological process or for prospective com-
mercial gain from knowledge learned. Empirical learn-
ing is sometimes intended to replace the manual elicita-
tion of classification rules from a domain expert (Quin-
lane$ al. 1987), as a knowledge acquisition sub-task for
building classification systems. A classification rule is
used to predict the class of a new example, where the
class is some discrete variable of practical importance.
For instance, an example might correspond to a patient
described by attributes such as age, sex, and various
measurements taken from a blood sample, and we want
to predict a binary-valued class of whether the patient

has an overactive thyroid gland. Empirical learning
here would be the learning of the classification rule
from a set of patient records.

The knowledge acquisition environment provides
specific goals for and constraints on an empirical learn-
ing system: the system should fit neatly into some
broader knowledge acquisition strategy, the system
should be able to take advantage of any additional
information over and above the examples, for in-
stance, acquired interactively from an expert, the sys-
tem should only require the use of readily available
information, and of course the system should learn ef-
ficiently and as well as possible.

This paper proposes and discusses some myths in the
machine learning community. All of these are twists on

*Current address: RIACS, NASA Ames Res., MS 244-
17, Moiler Field, CA 94035, (wray_ptolemy.arc.nasa.gov).

frameworks that have made significant contributions
to our research, so the emphasis of the discussion is
on qualifying the problems and suggesting solutions.
The current flavour of machine learning research is
first briefly reviewed before the so-called myths are
introduced. The myths address the framework of
bias, learning as search, computational learning the-
ory, Occam's razor, the continuing quest for "univer-
sal" learning algorithms, and the notion of automatic
non-interactive learning. While discussing these, a
Bayesian perspective is also presented that addresses
some of the issues raised. However, the arguments in-
troducing the myths are intended to be independent of
this Bayesian perspective. The conclusion raises some
general questions for a theory of empirical learning.

Machine learning research

The development of learning systems in the machine
learning community has been largely empirical and
ideas-driven in nature, rather than theoretically moti-
vated. That is, learning methods are developed based
around good ideas, some with strong psychological sup-
port, and the methods are of course honed through
experimental evaluation.

Such development is arguably the right approach in a
relatively young area. It allows basic issues and prob-
lems to come to the fore, and basic techniques and
methodologies to be developed. Although it should
be more and more augmented with theory as the area
progresses, especially where suitable theory is available
from other sciences.

Early comments by Minsky and Papert (Minsky
Papert 1972) throw some light onto this kind of de-
velopment approach. They were discussing history of
research in the "perceptron" which is a simple linear
thresholding unit that was a subject of intense study
in early machine learning and pattern recognition.

They first comment on the attraction of the percep-
tron paradigm (Minsky & Papert 1972, page 18).

Part of the attraction of the perceptron lies
in the possibility of using very simple physical
devices--"analogue computers'--to evaluate the
linear threshold functions.



The popularity of the perceptron as a model for
an intelligent, general purpose learning machine
has roots, we think, in an image of the brain itself

Good ideas and apparent plausibility were clearly the
initial motivating force.

While perceptrons usually worked quite well on sim-
ple problems, their performance deteriorated rapidly
on the more ambitious problems. Minsky and Papert
sum up much of the research as follows (Minsky _ Pa-
pert 1972, page 19):

The results of these hundreds of projects and ex-
periments were generally disappointing, and the
explanations inconclusive.

It was only after this apparent lack of success that
Minsky and Papert set about developing a more com-
prehensive theory of perceptrons and their capabilities.
Their theory led to a more mature understanding of
these systems from which improved approaches might
have been developed. The lack of success, however,
had already dampened research so the good ideas un-
derlying the approach were virtually forgotten for an-
other decade. Fortunately, a second wave of promising
"neural net" research is now underway.

The major claim of this paper is that research on
empirical learning within the machine learning commu-
nity is at a similar juncture. Several promising frame-
works have been developed for learning such as the
bias framework (Mitchell 1980), the notion of learn-
ing as search (Simon _ Lea 1974) and computational
learning theory (Valiant 1985). It is argued in this pa-
per that to progress we still need more directed theory
to give us insight about designing learning algorithms.

A catalogue of myths and legends

The theoretical basis for bias research

If a learning system is to come up with any hypotheses
at all, it will need to somehow make a choice based on
information that is not logically present in the learning
sample. The first clear enunciation of this problem in

the machine learning community was by Mitchell, who
referred to it as the problem of bias (Mitchell 1980).
Utgoff developed this idea further, saying (Utgoff 1986,
page 5)

Given a set of training instances, bias is the set
of all factors that collectively influence hypothe-
sis selection. These factors include the definition

of the space of hypotheses and definition of the
algorithm that searches the space of concept de-
scriptions.

Utgoff also introduced a number of terms: good bias
is appropriate to learn the actual concept, strong bias
restricts the search space considerably but indepen-

dent of appropriateness, declarative bias is defined
declaratively as opposed to procedurally, and prefer-
ence bias is implemented as soft preferences rather

than definite restrictions to the search space. Several
researchers have since extended this theory by consid-

ering the strength of bias (Haussler 1988), declarative
bias (l_ussell & Grosof 1987), the appropriateness of
bias, and the learning of bias (Tcheng et al. 1989;

Utgoff 1986). Much of this research has concentrated
on domains without noise or uncertainty. In noisy do-
mains, some researchers have considered the "bias to-
wards simplicity", "overfitting", or the "accuracy vs.
complexity tradeoff" (Fisher & Schlimmer 1988) first
noticed in AI with decision tree learning algorithms
(Cestnik et al. 1987).

There are, however, remaining open issues on this
line of research. First, where does the original bias
come from for a particular application? Are there
domain independent biases that all learning systems
should use? l_esearchers have managed to uncover
through experimentation rough descriptions of useful
biases, but a generative theory of bias has really only

been presented for the case of a logical declarative bias.
Second, investigation of bias in noisy or uncertain do-
mains (where perfect classification is not possible) is
fairly sparse, and the relation between the machine
learning notion of bias and the decades of literature in
statistics needs more attention. Third, there seems to

be no separation between that component of bias ex-
isting due to computational limitations on the learner,
bias input as knowledge to the original system, for in-
stance defining a search goal, and therefore unaffected
by computational limitations, and the interaction be-
tween bias and the sample itself.

What is required is a more precise definition of bias,
its various functional components and how they can
be pieced together so that we can generate or at least
reason about a good bias for a particular application
without having to resort to experimentation.

So while important early research identified the ma-
jor problem in learning as bias, and mapped out some
broad issues particularly concerning declarative bias,
we have not since refined this to where we can rea-

son about what makes a bias good. The first myth is

that _here is currently a 8uffieien_ theoretical basis for
understanding _he problem of bias.

Utgoff's definition of bias could, for instance, be de-
composed into separate functional components.

Hypothesis space bias: This component of bias
defines the space of hypotheses that are being
searched, but not the manner of search.

Ideal search bias: This component of bias defines
what a learning system should be searching for given
the sample, that is, assuming infinite computing re-
sources are available for search. As a contrast, one
could consider algorithm bias as defining how the
algorithm differs from the ideal.

Appllcation-speclfic bias: This is the component
of the bias that is determined by the application.

This decomposition is suggested by Bayesian tech-

niques which give prescriptions for dealing with each



of these components (Buntine 1990). Bayesian tech-
niques deal with belief in hypotheses, where belief is
a form of preference bias. This gives, for instance,
prescriptions for learning from positive-only examples,
and for noisy or uncertain examples of different kinds.

For many learning systems described in the litera-
ture, ideal search bias is never actually specified, al-
though notable exceptions exist (Quinlan & Rivest
1989; Muggleton 1987). Many publications describe
an algorithm and results of the algorithm but never
describe in general goal-oriented terms what the algo-
rithm should be searching for, although they give the
local heuristics used by the algorithm. Hence it is often
difficult to determine the limitations of or assumptions
underlying the algorithm. In areas such as construc-
tive induction, where one is trying to construct new
terms from existing terms used to describe examples,
this becomes critical because the careful evaluation of

potential new terms is needed for success. A survey of
constructive induction methods (Matheus & Rendell
1989) reveals that few use a coherent evaluation strat-
egy for new terms. This issue of search is the subject
of the next myth.

Learning is a well-specified search problem

A seminal paper by Simon and Lea argued that learn-
ing should be cast as a search problem (Simon & Lea
1974). While few would disagree with this general idea,
there appears to be no broad agreement in the machine
learning community as to what precise goals a learn-
ing algorithm should be searching for. For a particular
application, can we obtain a precise notion of the goal
of search at all? Of course, the problems of bias and
overfitting are just different perspectives of this same
problem. The second myth, related to the first, is that
uader the current _iew of learning as search, the goal of
search is well-specified. If it was generally known how
to design a good bias then the search problem could
be made well-specified.

Recurrent problems in machine learning such as
splitting and pruning rules for decision trees (Mingers
1989) and the evaluation of new predicates for con-
structive induction (Matheus & Rendell 1989) are just
some symptoms of this broad search problem.

There is one context, however, where learning as
search is well-specified'according to most current learn-
ing theories. Any reasonable model of learning or
statistics has asymptotic properties that guarantee the
model will converge on an optimal hypothesis. When a
large enough quantity of data is available, it is easy to
show the various statistical approaches become almost
indistinguishable in result: maximum likelihood meth-
ods from classical statistics, uniform convergence and
empirical risk minimisation techniques (Vapnik 1989)
adopted by the computational learning community for
handling logical, noisy and uncertain data, minimum
encoding approaches (Wallace & Freeman 1987) and
Bayesian methods (Buntine 1990). For instance, prob-
ably approximate correctness (PACness) is a notion

used in computational learning theory to measure con-
fidence in learning error (Valiant 1985). Under the
usual definition of PACness, if confidence is high that
error is low then the same will hold for a Bayesian

method no matter what prior was used (this is a di-
rect corollary of (Buntine 1990, Lemma 4.2.1)). In

Bayesian statistics, "large enough" data means there
is so much data that the result of a Bayesian method
is virtually the same no matter what prior was used
for the analysis; this situation is referred to as stable
es_iraa_ion (Berger 1985).

We say a sample is sufficient when the condition of
"large enough" more or less holds for the sample. (Be-
cause the condition is about asymptotic convergence,
it will only ever hold approximately.) This definition
is about as precise as is needed for this paper. This
means, for instance, that a sufficient sample is a rea-
sonably complete specification of the semantics of the
"true" concept but not its representational form. (As-
sume the classification being learned is time indepen-
dent so the existence of a true concept is a reasonable

assumption.)
A sufficient sample makes the search well-specified.

For instance, if we are seeking an accurate classifier,
then with a sufficient sample we can determine the
"true" accuracy of all hypotheses in the search space
reasonably well just by checking each one against the
sample. That is, we just apply the principle of em-
pirical risk minimisation (Vapnik 1989). With an in-
sufficient sample, we can often check the accuracy of
some hypotheses the same way--this is often the pur-
pose of an independent test set--but the catch is we
cannot check the accuracy of all hypotheses because
inaccurate hypotheses can easily have high accuracy
on the sample by chance. For instance, this happens
with decision trees; it is well known they often have to
be pruned because a fully grown tree has been _fitted
to the noise" in the data (Cestnik e_ al. 1987).

A variation on this theme has been made by Weiss
and colleagues who report a competitive method
for learning probabilistic conjunctive rules (Weiss
Kapouleas 1989). They make the hypothesis space
small (conjuncts of size three or less), so the sample
size is nearly "sufficient". They then do a near ex-
haustive search of the space of hypotheses--;something
not often done in machine learning--to uncover the
rule minimising empirical risk.

It is unfortunate, though, that a sufficient sample
is not always available. We may only have a limited
supply of data, as is often the case in medical or bank-
ing domains. In this case we would hope our learning
algorithm will make the best use of the limited supply
of data available. How can this be done?

Computational learning theory gives a

basis for learning algorithms

Valiant's "theory of the learnable" was concerned with

whether a machine can learn a particular class of con-



ceptsin feasiblecomputation(Valiant1985). This
theorycenteredaround three notions: uniform con-
_ergence or distribution-free learning, that learning
should converge regardless of the underlying distri-
butions, probable approzimate correctness (PACness),
that the best a learner can do is probably be close to
correct, and the need for _ractible algorithms for learn-
ing. These three notions and variations have since been
vigorously adopted for a wider range of learning prob-
lems by the theoretical community to create an area
called computational learning theory.

The theory has been concentrated on the strength of
bias and resultant worst-case complexity results about
learning logical concepts. Evidence exists, however,
that these results can be improved so better principles
exist for the algorithm designer.

Simulations reported in (Buntine 1990) indicate
a large gap exists between current worst-case error

bounds obtained using uniform convergence and the
kinds of errors that might occur in practice. The same
gap did not occur when using a Bayesian method to
estimate error, although the question of priors clouds
these results. In addition, the current bounds only
consider the size of the sample and not the contents of

the sample. In the simulations, for instance, the space
of consistent hypotheses sometimes reduced to one hy-
pothesis quite quickly, indicating the "true" concept
had been identified; yet bounds based on just the size
of the sample cannot recognise this. This identifica-
tion can occur approximately in that an algorithm may
recognise parts of the concept have been identified.
This behaviour has been captured using the "reliably
probably ahnost always usefully" learning framework
(Rivest & Sloan 1988), and a technique that generalises
this same behaviour is implicit in a Bayesian method
(Buntine 1990).

It is argued in (Buntine 1990) that these issues arise

because of the worst-case properties of the standard
PACness notion which is based on uniform conver-

gence. While uniform convergence has desirable prop-
erties, it cannot be achieved when there is less data.

In this context, less stringent principles give stronger
guides. This is especially relevant in the context of
learning noisy or uncertain concepts where a variety of
other statistical principles could be used instead.

So the third myth is that computational learning the-
ory, in its current.form, provides a solid basis on _ohich
the algorithm designer can perform his duties. There
are two important qualifications where this is not a

myth. First, computational learning theory currently
provides the algorithm designer with a skeletal theory
of learning that gives a rough guide as to what to do

and where further effort should be invested. Second,
there are some areas where computational learning the-
ory has provided significant support to the algorithm
designer. For instance, in the previous section it was
argued that with the notion of probably approximate
correctness, computational learning theory provides a
basis for learning in the context of a sufficient sample.

Occam's razor has a simple explanation

A standard explanation of Occam's razor (Blumer et
al. 1987) can be summarized as follows (Dietterich
1989):

The famous bias of Occam's Razor (prefer the sim-
plest hypothesis consistent with the data) can thus
be seen to have a mathematical basis. If we choose

our simplicity ordering before examining the data,
then a simple hypothesis that is consistent with

the data is provably likely to be approximately
correct. This is true regardless of the nature of
the simplicity ordering, because no matter what
the ordering, there are relatively few simple hy-
potheses.

An algorithm that looks for a simpler hypothesis un-
der certain computational limitations has been called
an Occam algorithm (Blumer e_ al. 1987). While the
mathematical basis of Occam algorithms is solid, their
useful application can be elusive. A poorly chosen Oc-

cam algorithm is rather like the drunk who, having lost
his keys further down the road, only searches for them
around the lamp post because that is the place where
the light is strongest. Search should be directed more
carefully.

Clearly, an Occam algorithm can only be said to pro-
vide useful support for Occam's razor if it will at least
sometimes (not infrequently) find simpler hypotheses
that are good approximations. The catch with Occam
algorithms is that there is no guarantee they will do so.
Suppose all reasonable approximations to the "true"
concept are complex. Notice almost all hypotheses in

a large space can be considered complex (since size is
usually determined from the length of a non-redundant
code). Then the framework of constructing a simplic-
ity ordering and searching for simpler hypotheses has
been pointless. If this almost always turns out to be
the case, then the Occam algorithm approach will al-
most always not be useful. Certainly no proof has been
presented that a guarantee of useful application exists;
the main theorem in (Blumer e_ al. 1987) ignores this
problem by assuming the "true" function is of size "at
most n'.

In other words, we need at least a weak guarantee
that during learning, simpler hypotheses will some-
times be found that are good approximations. There
are two potential arguments for this.

The first potential argument is that since we only re-
quire a good approximation, the hypothesis space can
be reduced in siz e to one that is sufficient for finding
a good approximation. A thorough treatment of this
appears in (Amsterdam 1988). For the purposes of
discussion, assume there is a uniform distribution on
the examples and we are considering the space of all
possible hypotheses defined over E kinds of examples.
Such a space has size 2E because each kind of example
is either in the concept or not. Notice that for any
one hypothesis, there are 2_E hypotheses within error

e of it. So the smallest space of hypotheses guaranteed



to containa hypothesis within e of the "true" concept
must be at least of size 2( 1-_)B. So this first argument
provides some support, but the reduction factor of just
(1 - e) shows the argument is clearly not sufficient to
provide a guarantee on its own.

Second, if we believe the simplicity ordering implicit
in the Occam algorithm is somehow appropriate, that
is, simpler hypotheses should be expected to be good
approximations, then the Occam algorithm should be
useful. Here, the power of the Occam algorithm comes
from choosing a simplicity ordering appropriate for the
problem in the first place. Bayesian methods sup-
port this principle because the simplicity ordering cor-
responds to prior belief. In minimum encoding ap-
proaches (Wallace _ Freeman 1987) the principle is
achieved by choosing an appropriate representation in
which the "true" concept should be simple.

So the complexity argument above needs to be qual-
ified: it is not useful in learning "regardless of the na-
ture of the simplicity ordering". Either way, we need to

think carefully about an appropriate simplicity order-
ing if we are to usefully employ the Occam algorithm.

The explanation for Occam's razor quoted above
provides a mathematical basis for Occam's razor. How-
ever, the fourth myth is that this mathematical basis
provides a full and useful ezplanation of Occam's ra-
zor. Two other supporting explanations have been pre-
sented that seem necessary to engage this mathemat-
ical basis. And we have not yet considered the ease
where concepts have noise or uncertainty. In this con-
text different complementary arguments for Occam's
razor become apparent (Wallace Sz Freeman 1987).
Perhaps the key point is that Occam's razor finds prac-
tical application because of people's inherent ability to
select key attributes and appropriate representations
for expressing a learning problem in the first place
(Michie 1986). There may also be other more subtle

psychological explanations for its use.

"Universal" learning methods are best

Empirical learning seems to ignore one of the key
lessons for AI in the 1970s called the strong knowledge
principle (Waterman 1986, page 4):

... to make a program intelligent, provide it with
lots of high quality specific knowledge about some
problem area.

Whereas techniques such as explanation-based learn-

ing, analogical learning, and knowledge integration
and refinement certainly embrace the strong knowledge
principle, in empirical learning, asit is often described
in the literature, one simply picks a universal learning
method, inputs the data and then receive as output
a classification rule. While early logical induction sys-
terns like Shapiro's MIS (Shapiro 1983) and subsequent
similar systems do appear to incorporate background
knowledge, they usually do so to extend the search
space rather than to guide the search (Buntine 1988).

Some successful machine learning methodologies do
incorporate weaker application-specific knowledge by
some means. Two approaches are the careful selection
of attributes in which examples are described (Quin-

lan et al. 1987; Michie 1986) and the use of various
forms of interaction with an expert (Buntine _ Stir-
ling 1990). In addition, Bayesian statistics, with its
notion of subjective knowledge or prior belief, could
provide a means by which application-specific knowl-
edge can be cautiously incorporated into the learning
process.

Yet many comparative studies from the machine
learning community, for instance, fail to consider even
weak kinds of knowledge about an application that
would help decide whether an algorithm is appropriate
for an application, and hence whether the comparison
of algorithms on the application is a fair one. Algo-
rithms are applied universally to all problems without
consideration of their applicability. A similar issue has
been noted by Fisher and Schlimmer (Fisher & Schlim-

mer 1988, page 27).

Using a statistical measure to characterize predic-
tion tasks instantiates a methodology forwarded

by Simon (1969) - domains must be characterized
before an AI system's effectiveness can be prop-
erly evaluated. There is little benefit in stating
that a system performs in a certain manner un-
less performance is tied to domain properties that
predict system performance in other domains. Ad-
herence to this strategy is relatively novel in ma-
chine learning.

The fifth myth is that there ezist universal learning
algorithms that perform well on any application regard-
less. tL_ther, there exist universal learning algorithms

(and each of us provides living proof), but these can
always be outperformed by a second class of algorithms
better selected and modified for the particular appli-
cation.

A way to develop this second class of non-universal
learning algorithms is to develop "targeted" learning
methods that, first, are suitable for specific kinds of
classification tasks or specific inference models, and,
second are able to be fine tuned or primed for the
application at hand. The choices necessary in using
these algorithms could be made in the light of sub-
jective knowledge available, for instance, elicited in an
interview with an expert. The correct choice of model
is known to have considerable bearing on statistical
problems like learning (Berger 1985, page 110).

At the broadest level we could choose to model the

classification process with probabilistic decision trees
or DNF rules, Bayesian or belief nets, linear classifiers,
or perhaps even rules in a pseudo lst-order logic such
as DATALOG. And for each of these models there are

many additional constraints or preferences that could
be imposed on the representation to give the learning
algorithm some of the flavour of the strong knowledge
learning methods. One could choose to favour some



attributes over others in a tree algorithm or prime a
belief net algorithm with potential causes and known
independencies.

Learning should be non-lnteractive

One aspect of learning for knowledge acquisition, not
sufficiently well highlighted in earlier statistical ap-
proaches, is the capability of promoting interaction
with the expert to assist learning. This is done to
obtain additional knowledge from the expert that may
well be equivalent in value to a possibly expensive sam-
ple. The importance of interactive learning was recog-
nised as early as 1947 by Alan Turing (Turing 1986,
page 124), who said:

No man adds very much to the body of knowledge,

[sic] why should we expect more of a machine?
Putting the same point differently, the machine
must be allowed to have contact with human be-

ings in order that it may adapt itself to their stan-
dards.

Interactive learning should be used with caution,
however, because experts are often unreliable sources
of knowledge. In the context of uncertainty, people
have limitations with reasoning and in articulating
their reasoning, so knowledge elicited must be inter-
preted with caution (Cleaves 1988). Also, we would
hope that learning could still be achieved without in-
teraction, perhaps at the expense of needing larger
samples.

However, interaction is not always possible. Some
applications require a so-called "autonomous agent".
With these, not only should learning be entirely au-
tomatic, there may also be no-one present to help se-
lect an appropriate targeted learning algorithm as sug-
gested in the previous section.

While most researchers now believe that learning
can profit with careful expert interaction where pos-
sible, and research in this area exists (Angluin 1988;
Buntine & Stirling 1990), the sixth myth, that learn-
ing should be automatic and non-interactive, lives on in
many experimental studies reported and many of the

algorithms under development.

Requirements for a theory of empirical

learning

This section suggests questions that a theory for learn-
ing of classification rules should be addressing.

• How does the use of a learning system fit in a broader
knowledge-acquisition strategy?

• According to what inference model should classifica-
tion proceed, or in other words, what form of classi-
fication rules should be learned?

• What is the induction protocol or typical course of
an induction session? What sorts of questions can
the trainer reasonably answer, and with what sort
of knowledge can the trainer prime the learning sys-
tem?

* For a particular induction protocol and inference
model, how should the system perform induction
given its computational resources? What is being
searched for, and how should this search be per-
formed?

* What are the average and worst-case computa-
tional and data requirements of the system for a

given problem? Furthermore, what problems can
be solved with reasonable computational resources,
and what amounts of data should be needed?

. How does a theory of uncertainty relate to the prob-
lem of learning classification rules? How can this
then throw light on the previous search problem7

* When and how should subjective knowledge, weak
or strong domain knowledge, or other information
extraneous to the sample be incorporated into the
learning process? If this is done but poorly, how can
the system subsequently detect from evidence in the
sample that the incorporated subjective knowledge
is actually inappropriate to the application?

. How reliable are the classification rules learned by
the system from available data? How much more
data is required, and of which type? Can the sys-
tem ask a few pertinent questions or design a few
key experiments to improve subsequent results? Are
the results sensitive to assumptions implicit in the

system? (In Bayesian methods, this includes priors.)

It has been argued at various places throughout
this paper that Bayesian theory can address at least
some of these questions. It is certainly a (seventh)
myth, however, that Bayesian methods provide a com-
plete theory for designing learning algorithms. There
are many complementary statistical perspectives and
many complementary theoretical too]. such as optimi-
sation and search, decision theory, resource-bounded
reasoning, computational complexity, models of man-
machine interaction, and the psychology of learning,
etc. In addition, some of the above questions require
a pragmatic and experimental perspective, particular
those concerned with the human interface and learning
methodology.
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